Application Fields

EEG

Recording EEG is a well-established approach to assess neural functioning in a wide range of participants and applications. The available system configurations vary widely and depend much on the research paradigm and participants.
An event-related potential (ERP) is any stereotyped electrophysiological response to an internal or external stimulus. In simple terms it is any measured brain response that is the direct result of a thought process or perception.
With EEG source analysis we attempt to bridge the gap between surface EEG data and the respective neural source generators: EEG dynamics reflect the collective action (superposition) of many neuronal systems distributed across the brain. Source analysis disentangles the different neuronal sources and gives you a hint where and when it happened. Information pathways in the brain can be studied by using either the reconstructed activation waveforms or by time-frequency analysis. Source analysis can identify the brain regions involved in different tasks and depending on data quality and model quality, yield a precise localization of the generators in both space and time.
Functional Magnetic Resonance Imaging (fMRI) provides the hemodynamic means to assess neural activation. Blood flow changes linked to neural activation, can be localized with extreme precision. Joining the temporal precision of the EEG with the spatial resolution of the fMRI, is a cutting edge tool in Neuroscience and combining these correctly, is what we do.
Functional Near Infra-red Spectroscopy (fNIRS) is among the most recent additions in the Neuroscientist’s tool chest. It provides the ability to measure blood flow changes around the brain without the need for magnetic fields or currents. Its portability permits the quantification of hemodynamic changes in places not feasible for researchers in the past. Explore how you can use NIRS in your research.
Mobile / wireless EEG applications and MoBI (Mobile Brain/Body Imaging) have become increasingly popular over the past few years. More and more scientists wish to push the boundaries of their EEG research and get answers to questions like: What does the brain do when the subject is moving (e.g. during a skydive or when running or cycling)?
Transcranial magnetic stimulation (TMS) is a non-invasive means to alter neural brain activity via electromagnetic impulses. TMS research combined with EEG, provides a powerful tool to investigate causal relationships and neural networks. Differences in TMS and EEG technology determine the ease of use, data quality and data access speeds of joint EEG/TMS applications. Research grade stimulators provide the maximum flexibility available pulse waveform while assuring high EEG data quality.
Sleep is generally characterized by a reduction in voluntary body movement, decreased to little reaction to external stimuli, loss of consciousness, a reduction in auditory receptivity, an increased rate of anabolism (the synthesis of cell structures), and a decreased rate of catabolism (the breakdown of cell structures). The capability for arousal from sleep is a protective mechanism and also necessary for health and survival.
Magnetoencephalography (MEG) is an imaging technique which measures the magnetic fields produced by neuronal activity in the brain. It utilise’s extremely sensitive devices – superconducting quantum interference devices (SQUIDs) to achieve this.
Several EEG research applications require that a video of the subject is recorded together with the EEG. Particularly in sleep research, work with babies and in mobile EEG applications, combining video and EEG recordings is a standard procedure.
Auditory brainstem responses (ABR) or brainstem auditory evoked potentials (BAEP) are early – short-latency – EEG components, evoked by acoustical stimulation. The name refers to the generators: these components are mainly – however not exclusively – originated from the brainstem, relatively far away from the EEG electrodes. Furthermore the ABRs are characterized by small amplitude – below 1 µV – and short latency – five to seven peaks within 10 ms.
… is the result of autonomous or voluntary neural processes. Quantifying signals such as ECG, EMG, EOG, GSR, respiration, or others can be key contributors to answering central questions in Neuroscience. Peripherial signals can be recorded on their own or synchronized with cortical activity.